
Lecture Notes on Structure of Matter by Mohammad Jellur Rahman, Department of Physics, BUET, Dhaka-1000 

 1 

Lecture 01: Crystalline and Non-crystalline solids 

Introduction 

 Matter can be subdivided into two states-solid and fluid, of which the later is subdivided into 

liquid and gaseous state. Matter can also be subdivided into condensed stated and gaseous state 

where condensed state is subdivided into the solid and liquid state.  

 Although very little of the matter in the universe is in the solid state, solids constitute much 

of the physical world around us and a large part of the modern technology is based on the special 

characteristics of the various solid materials.  

 

Crystalline and non-crystalline (Amorphous Solids)  

   Nature favors the crystalline state of the solids, because the energy of the ordered atomic 

arrangement is lower than that of an irregular packing of atoms. 

Crystalline Solids 

 A solid in general is said to be a crystal if the constituent particles (atoms, ions or 

molecules) are arranged in a three dimensional periodic manner or simply it has a reticular 

structure. In crystalline solids the atoms are stacked in a regular manner, forming a 3-D pattern 

which may be obtained by a 3-D repetition of a certain pattern unit. It has long-range orderness and 

thus has definite properties such a sharp melting point. Thus we can say, crystal is a three 

dimensional periodic array of atoms. When the crystal grows under constant environment, the 

external geometrical shape of the crystal often remains unchanged. Thus, the shape is a 

consequence of the internal arrangement of constituent particles. The ideal crystal has an infinite 3D 

repetition of identical units, which may be atoms or molecules. All ionic solids and most covalent 

solids are crystalline. All solid metals, under normal circumstances, are crystalline. 

Single crystal 

Solid 

Non-Crystalline/Amorphous 
(Glass, plastic, Resin, Pitch, Sugar, Candy, etc) 

 

Single crystal 
(Rock salt, Calcites, Quartz solids)  
 
 

Polycrystalline/Semi crystalline 
(Rock, sand, metals, salts, etc)  
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 When the periodicity in crystal pattern extends throughout a certain piece of materials, one 

speaks of a single crystal or unit crystal or mono-crystal. Rock salt, calcites, quartz, etc. are 

examples of common single crystal. 

Polycrystalline solids (Polymorphism) 

 When the periodicity in the crystal structure is interrupted at so-called grain boundaries, the 

crystal is said to be polycrystalline. In this case the size of the grains or crytallites is smaller than 

the size of the pattern unit which forms the periodicity. The size of the grain in which the structure 

is periodic may vary from macroscopic dimensions to several angstroms. In general, the grains in 

such a solid are not related in shape to the crystal structure, the surface being random in shape rather 

than well defined crystal planes. Rock, sand, metals, salts, etc. are some examples of polycrystalline 

solids.  

 

 

 

 

 

 

 

Fig. Single crystal, polycrystalline, amorphous 

Noncrystalline solids  

 It is the opposite extreme of a single crystal. These types of solids have neither reticular nor 

granular structure. At most causes exhibit short range orderness in their structure. Glass and plastic 

are common example of this class. When the size of the grains or crystallites becomes comparable 

to the size of the pattern unit, we speak of amorphous substances. A typical feature of these 

substances is that they have no definite melting points. As their temperature is increased, they 

gradually become soft; their viscosity drops, and begins to behave like ordinary viscous liquids.  

 Amorphous solids have no long-range order. The atoms or molecules in these solids are not 

periodically located over large distances. An amorphous structure is shown below. 
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Many amorphous materials have internal structures similar to liquids. In fact, the only obvious 

distinction between amorphous materials, such as glass, and liquids is the high viscosity (resistance 

to flow) of the amorphous solids. 

All solids tend to exist in the crystalline state rather than the amorphous state because the crystalline 

structure always has a larger binding energy. However, in numerous instances amorphous solids are 

formed when liquids are cooled below the melting temperature. This occurs for two reasons: 

1)         the structure of the molecules is so complex that they cannot easily rearrange themselves 

to form a crystalline structure, and/or 

2)         the solid forms so rapidly that the atoms or molecules do not have time enough to 

rearrange themselves in a crystalline structure. 

 

Generally, amorphous solids have one of two distinct atomic arrangements: either a tangled mass of 

long-chained molecules or a 3-dimentional network of atoms with no long-range order. 

Amorphous materials with long-chained molecules (e.g. polymers) have a structure similar to that 

shown below. 

                     
Each segment in above figure represents one of the repeating units of the polymer chain. The 

arrangement of the molecules is fairly random, resulting in a loosely packed structure. Network 

amorphous solids are usually Oxides, the most common being Silica (SiO2). The amorphous SiO2 

structure is also shown above. Only oxygen atoms are shown (corners of tetrahedral) in this 

amorphous SiO2 structure. There is a Silicon atom at the center of each tetrahedral which is not 

shown here. This structure has short-range order but none of the long-range order found in 

crystalline Silica. Thus, in both amorphous and crystalline Silica, each Silicon atom and each 
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Oxygen atom have essentially the same local surroundings, even though there is no long-range 

periodicity in the amorphous structure. 

 

Solids that do not have long range atomic order are called amorphous solids. They often have 

subunits that have consistent form, but their long-range order is disturbed because the sub-units 

pack randomly. Amorphous solids are formed when liquids are cooled too quickly from the molten 

state to allow the sub-units to arrange themselves in the low energy, crystalline state. 

Solids with pure ionic bonds do not form amorphous solids but all the other bond types can produce 

amorphous solids. Silica (SiO2) can form either covalent amorphous solids, usually called glasses 

or regular crystal structrures (Quartz). 

In glasses, the tetrahedral SiO2 structure 
forms the sub-unit, and it is the flexibility of 
corner to corner links that accounts for the 
ability of SiO2 to form the random 
structures shown below. 

 

If the molten Silica is cooled very slowly, 
the sub-units fall into the regular crystal 
structure of Quartz, shown below. 

 

Impurities in SiO2 hinder crystallisation. Common window glass (soda lime glass) has 

Na20 and CaO added. Ovenware glass (borosilicate glass) has B203 added. 

 

Liquid crystals (LCs) are a state of matter that have properties between those of a conventional 

liquid and those of a solid crystal.[1] For instance, an LC may flow like a liquid, but its molecules 

may be oriented in a crystal-like way. There are many different types of LC phase, which can be 

distinguished by their different optical properties (such as birefringence). When viewed under a 

microscope using a polarized light source, different liquid crystal phases will appear to have distinct 

textures. 

Examples of liquid crystals can be found both in the natural world and in technological applications. 

Most modern electronic displays are liquid crystal based. Lyotropic liquid-crystalline phases are 

abundant in living systems. For example, many proteins and cell membranes are LCs. Other well-
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known LC examples are solutions of soap and various related detergents, as well as tobacco mosaic 

virus. 

 

Liquid crystal display 

Liquid crystals find wide use in liquid crystal displays, 

which rely on the optical properties of certain liquid 

crystalline substances in the presence or absence of an electric 

field. In a typical device, a liquid crystal layer (typically 

10 µm thick) sits between two polarizers that are crossed 

(oriented at 90° to one another). The liquid crystal alignment 

is chosen so that its relaxed phase is a twisted one (see 

Twisted nematic field effect). This twisted phase reorients 

light that has passed through the first polarizer, allowing 

its transmission through the second polarizer (and reflected back to the observer if a reflector is 

provided). The device thus appears transparent. When an electric field is applied to the LC layer, the 

long molecular axes tend to align parallel to the electric field thus gradually untwisting in the center 

of the liquid crystal layer. In this state, the LC molecules do not reorient light, so the light polarized 

at the first polarizer is absorbed at the second polarizer, and the device loses transparency with 

increasing voltage. In this way, the electric field can be used to make a pixel switch between 

transparent or opaque on command. Color LCD systems use the same technique, with color filters 

used to generate red, green, and blue pixels. Similar principles can be used to make other liquid 

crystal based optical devices.  

They are used in a wide range of applications, including computer monitors, television, instrument 

panels, aircraft cockpit displays, signage, etc. They are common in consumer devices such as video 

players, gaming devices, clocks, watches, calculators, and telephones. 

 

Polymorphism 

Polymorphism refers to the ability of a solid to exist in more than one crystalline form or structure. 

According to Gibbs' rules of phase equilibria, these unique crystalline phases will be dependent on 

such intensive variables as pressure, temperature and volume. Polymorphism can potentially be 

found in many crystalline materials including polymers, minerals, and metals, and is related to 

 

 

 

 

 

 

Structure of liquid crystal display: 
1 – vertical polarization filter,  
2,4 – glass with electrodes,  
3 – liquid crystals,  
5 – horizontal polarization filter,  
6 – reflector 
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allotropy, which refers to elemental solids. The complete morphology of a material is described by 

polymorphism and other variables such as crystal habit, amorphous fraction or crystallographic 

defects. Polymorphs have different stabilities and may spontaneously convert from a metastable 

form (or thermodynamically unstable form) to the stable form at a particular temperature. They also 

exhibit different melting points, solubilities, and X-ray diffraction patterns. 

One good example of this is the quartz form of silicon dioxide, or SiO2. Quartz is one of the several 

thermodynamically stable crystalline forms of silica, SiO2. The most important forms of silica 

include: α-quartz, β-quartz, tridymite, cristobalite, coesite, and stishovite. In the vast majority of 

silicates, the Si atom shows tetrahedral coordination by 4 oxygens. All but one of the crystalline 

forms involve tetrahedral SiO4 units linked together by shared vertices in different arrangements. In 

different minerals the tetrahedra show different degrees of networking and polymerization. For 

example, they occur singly, joined together in pairs, in larger finite clusters including rings, in 

chains, double chains, sheets, and three-dimensional frameworks. The minerals are classified into 

groups based on these structures. In each of its 7 thermodynamically stable crystalline forms or 

polymorphs of crystalline quartz, only 2 out of 4 of each the edges of the SiO4 tetrahedra are shared 

with others, yielding the net chemical formula for silica: SiO2. 

Another example is elemental tin (Sn), which is malleable near ambient temperatures but is brittle 

when cooled. This change in mechanical properties due to existence of its two major allotropes, α- 

and β-tin. The two allotropes that are encountered at normal pressure and temperature, α-tin and β-

tin, are more commonly known as gray tin and white tin respectively. Two more allotropes, γ and σ, 

exist at temperatures above 161 °C and pressures above several GPa.[12] White tin is metallic, and 

is the stable crystalline form at or above room temperature. Below 13.2 °C, tin exists in the gray 

form, which has a diamond cubic crystal structure, similar to diamond, silicon or germanium. Gray 

tin has no metallic properties at all, is a dull-gray powdery material, and has few uses, other than a 

few specialized semiconductor applications.[13] Although the α-β transformation temperature of tin 

is nominally 13.2 °C, impurities (e.g. Al, Zn, etc.) lower the transition temperature well below 0 °C, 

and upon addition of Sb or Bi the transformation may not occur at al. 
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Lecture 02: Space lattice and Translation vectors 

The property that distinguishes crystals from other solids is that the constituent particles in crystals 

are arranged in a three dimensional periodic manner. In 1848 Bravais introduced the concept of 

space lattice.  

 

Lattice: A lattice is a regular periodic array of points in space where objects are replaced by points-

imaginary points. It may consider as removal of the atom but the centre remains there.  

 
Lattice arrangement  in 1-D is the line of Lattice, in 2-D is the Lattice plane, 

in 3-D is the space Lattice. 

Thus the three dimensional lattice arrangements with translation vectors is the space lattice. Let us 

consider the translation of an object to a finite distance and then repeated systematically along 3-D 

crystallographic directions x, y, z to obtain 3-D space lattice.  

 

Lattice is a mathematical abstraction which is defined by 3 fundamental translation vectors ,a


,b


,c


 

such that the atomic arrangement looks the same in every respect when viewed from the point r as 

when viewed from the point  

r = 



r  + n1


a + n2


b + n3


c    ....................................................... (1)  

Where n1, n2, n3 are arbitrary integers and the set of points /r  defined by (1) for all n1, n2, n3 defines 

a lattice.  

Lattice point can thus be defined by 3-fundmental basis vectors called primitive translation vector in 

x, y, z crystallographic direction as  

  
 = n1a + n2b + n3c  

So that    

r = 



r +  



Lecture Notes on Structure of Matter by Mohammad Jellur Rahman, Department of Physics, BUET, Dhaka-1000 

 8 

For example: If the 3-D fundamental basis vectors of a crystal are 


a =3 i


, 


b =3 j


 and 



c = )(5.1 kji


 , the primitive translation operation   


 = n1(3 i


)+ n2(3 j


)+ n3 )(5.1 kji


  

gives the body centered cubic structure. 

 

Bravais and Non-Bravais lattice 

 There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all 

lattice points are equivalent and hence by necessity all atoms in the crystal are of the same kind. On 

the other hand, in a non-Bravais lattice, some of the lattice points are non-equivalent. Non-Bravais 

lattices are often referred to as a lattice with a basis. The basis is a set of atoms which is located 

near each site of a Bravais lattice. 

The lattice is defined by fundamental translation vectors. For example, the position vector of any 

lattice site of the two dimensional lattice in figure can be written as 

T=n1a1+n2a2 

where a1 and a2 are the two vectors shown in figure, and n1, n2 is a pair of integers whose values 

depend on the lattice site. So, the two non-collinear 

vectors a1 and a2 can be used to obtain the positions 

of all lattice points which are expressed by the 

equation. The set of all vectors T expressed by this 

equation is called the lattice vectors. Therefore, the 

lattice has a translational symmetry under 

displacements specified by the lattice vectors T. In 

this sense the vectors a1 and a2 can be called the 

primitive translation vectors. The choice of the 

primitive translations vectors is not unique. One could equally well take the vectors a1 and a = a1+a2 

as primitive translation vectors. This choice is usually dictated by convenience. 

 

 

Crystal structure 

 A crystal structure is formed when a group of atoms or molecules are attached identically to 

each lattice point. This group of atoms or molecules are called basis.  



Lecture Notes on Structure of Matter by Mohammad Jellur Rahman, Department of Physics, BUET, Dhaka-1000 

 9 

Basis is identical  – in composition, 

in arrangement, 

in orientation . 

and repeated periodically in space to form the crystal structure which can be represented by the 

logical formula: 

Lattice + Basis = crystal structure 

 
Lattice                 +    Basis                        crystal structure 

2-D noncollinear  translation define a plane lattice 

3-D non-coplanar translation defined a space lattice 

Primitive unit cell & Non-primitive unit cell 

 All solids are composed of discrete basic units which are the atoms. These atoms are not 

distributed randomly, but are arranged in a highly ordered manner relative to each other. Such a 

group of ordered atoms is referred to as a crystal. 

In 3-D, the simplest parallelepiped formed by the primitive translation operation T is called unit 

cell. 

The parallelepiped defined by primitive axes a, b, c is called primitive cell. The number of atoms in 

a primitive cell or primitive basis is always the same for a given crystal structure. 

 It is the minimum volume cell. 

 It is the building block element. 

 It has always only one lattice point per cell. 

Volume of the unit cell 


 cbaorcbaVc ..  

Here parallelogram 1, 2, 3 are equal in 

area and any one of them could be taken as 

the primitive cell. The 

parallelogram 4 has twice the area of a primitive cell and thus a compound cell. The compound cell 
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is also a non-primitive cell. There is more than one lattice point and the area is constant multiple of 

primitive cell. 

Example of primitive cell – Simple cubic; Non-primitive cell – Body centered cubic, Face centered 

cubic; Base centered orthorhombic, Hexagonal structure, etc. 

 

Wigner-Seitz cell 

 It was first suggested by E. P Wigner and F. Seitz. A primitive cell can also be chosen as:  

 Firstly, draw lines to connect a given lattice point to all 

nearby lattice points.  

 Secondly, at the midpoint and normal to these lines 

draw new lines or planes.  

The smallest volume enclosed in this way is the Wigner-Seitz primitive 

cell. All the space of the crystal may be filled by these primitive cells, by translating the unit cell by 

the lattice vectors. 

 

Lattice parameters and lattice constant 

 The lattice constant [or lattice parameter] refers to the constant distance between unit cells in 

a crystal lattice. Lattices in three dimensions generally have three lattice constants, referred to as a, 

b, and c. However, in the special case of cubic crystal structures, all of the constants are equal and 

we only refer to a. Similarly, in hexagonal crystal structures, the a and b constants are equal, and we 

only refer to the a and c constants. A group of lattice constants could be referred to as lattice 

parameters. However, the full set of lattice parameters consist of the three lattice constants and the 

three angles between them. 

For example the lattice constant for a common carbon diamond is a = 3.57Å at 300 K. The structure 

is equilateral although its actual shape can not be determined from only the lattice constant. 

Furthermore, in real applications, typically the average lattice constant is given. As lattice constants 

have the dimension of length, their SI unit is the meter. Lattice constants are typically of the order 

of several angstroms (i.e. tenths of a nanometre). Lattice constants can be determined using 

techniques such as X-ray diffraction or with an atomic 

force microscope (AFM). 
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Thus, the tree fundamental translation vectors


a ,


b ,


c  along with opposite angles , , , each of 

between two crystallographic axis as shown in figure are the lattice parameters and the distance 

between two identical atoms or molecules is the lattice constant. 

 

Co-ordination number 

 The points in a Bravais lattice that are closest to a given point are called its nearest 

neighbors. Because of the periodic nature of a Bravais lattice, each point has the same number of 

nearest neighbors. This number is thus a property of the lattice and is referred to as the co-

ordination number of the lattice. 

 In solid-state structures of crystals are defined by a simpler model in which the atoms are 

represented by touching spheres. In this model the coordination number of an atom is the number of 

other atoms which it touches. For an atom in the interior of a crystal lattice the number of atoms 

touching the given atom is the bulk coordination number; for an atom at a surface of a crystal, this 

is the surface coordination number. 

 

A simple cubic lattice has co-ordination no. 6, Body centered cubic lattice has co-ordination no. 8 

and face centered cubic lattice has co-ordination no. 12.  
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Lecture 03: Crystal Systems 

Two dimensional lattice symmetry: 

There are unlimited number of possible lattices because there is no natural limitation on the lengths 

of the lattice translation vectors or no the angle of between them.  

 

Bravais lattice is a common phrase for a distinct lattice type. In a Bravais lattice, all lattice points 

are equivalent and hence by necessity all atoms in the crystal are of the same kind.  

 

There are five distinct types (Bravais) of lattice symmetry in two dimensions such as: 

(i) Oblique (a b, 090 ) (ii) Square (a = b, 090 ), (iii) Hexagonal (a = b, 0120 ) (iv) 

Rectangular (a b, 090 ) (v) Centered rectangular (a b, 090 ). Of these (i)   general, (ii) to 

(v)  special types. 

The five fundamental two-dimensional Bravais lattices: 1 oblique, 2 rectangular, 3 centered 

rectangular, 4 hexagonal, and 5 square 

Three dimensional lattice symmetry: 
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The point symmetry groups in 3-D requires the 14 different lattice types listed in Table-1,. The 
general lattice is triclinic, and there are 13 special lattices. These are grouped for convenience into 
systems classified according to seven types of cells which are  

1. Triclinic (General Types – a  b  c,    ) 
2. Monoclinic  
3. Orthorhombic (Rhombic) 
4. Tetragonal 
5. Cubic 
6. Trigonal (Rhombohedral)  
7. Hexagonal 

 

Table: 1 The seven crystal systems divided into 14 Bravais lattices.  

Sl. 
No 

Crystal 
system 

Bravais lattice 
(Number & 

symbol) 

Unit cell 
characteristics 

(axes and angles) 

Lattice 
parameters 

Examples 

1 Triclinic  1, simple (P)  a  b  c,  
     900 6

,,
,,


cba  K2Cr2O7, 
CuSO4.5H2O, 

H3BO3 

2 Monoclinic  2, simple (P) 
Base-centred (C) 

a  b  c,  
   900   4

,,


cba
 

Monoclinic 
Sulpher, 

Na2SO4.10H2O 

3 Orthorhombi
c  

4,  simple (P)  
Base-centred (C) 
Body-centred (I) 
Face-centred (F)  

a  b  c,  
 =  =  = 900 

3cba  Rhombic 
sulphur, KNO3 

CaCO3,, 
Ba2SO4 

4 Tetragonal 2, simple (P) 
Body-centred (1) 

a = b  c,  
 =  =  = 900 

2ca  SnO2, White 
tin, TiO2, 
Ca2SO4 

5 Cubic 3, simple (P) 
Body-centred (I) 
Face-Centred (F)  

a = b = c,  
 =  =  = 900 

1a  Copper, KCl, 
NaCl, Zinc 

blend, 
Diamond 

6 Trigonal  1, simple (P)  a = b = c,  
 =  =   900,  
 1200 

2

a  Ca2CO3 

(Calcite), HgS 
(Cinnaber) 

7.  Hexagonal  1,  simple (P)  a = b  c,  
 =  = 900,  
  = 1200  

2ca  Graphite, Mg, 
ZnO, CdS, 

P  Primitive (it has atoms only at the corners of the parallelepiped)  
C  Base-centered (it has extra atom at the centre of the base) 
I  Body centered (From German word Innenzentriete)  
F  Face-centered 

triclinic P    
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P C   

monoclinic 

  

  

P C I F 

orthorhombic 

    
P I   

tetragonal 

  

  

P    

rhombohedral 

 

   

P    

hexagonal 

 

   

P (pcc) I (bcc) F (fcc)  

cubic 

   

 

The volume of the unit cell can be calculated by evaluating a · b × c where a, b, and c are the lattice 
vectors. The volumes of the Bravais lattices are given below: 
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Bravais lattices in 4 dimensions 
In four dimensions, there are 52 Bravais lattices. Of these, 21 are primitive and 31 are centered. 
 

Lattice points per unit cell 

In primitive cell, lattice points are located only at corners, while each corners of the cell is common 

to eight neighboring unit cells and the contribution towards the unit cell per corner is only one-

eight. Since there are eight corners, therefore the number of lattice point per unit cell is only one.  
 

Primitive cell contains one lattice point.  

Cubic cell contains one lattice point.  

Body centered cubic contains 2 lattice points  

and conventional face centered cubic (fcc) cell contains four lattice points.  
 

Characteristics of cubic lattices:  

Volume, conventional cell Simple  
a3 

Body-Centred 
a3  

Face Centred 
a3 

Lattice points per unit cell  1 2 4 
Volume of primitive cell  a3 

2
1 a3 

4
1 a3 

Number of nearest neighbors  6 8 12 
Packing fraction or efficiency  0.524 or 52%  0.680 or 68% 0.740 or 74%  
Hexagonal close packed  74%, c/a = 1.633 

Primitive cell of bcc and fcc structure  

Lattice system Volume 

Triclinic  
Monoclinic  
Orthorhombic abc 
Tetragonal a2c 
rhombohedral  

Hexagonal 
 

Cubic a3 
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Hexagonal close packed structure (hcp) 

                                      
                  Diamond Structure   Zinc blend (ZnS) Structure 

 

The NaCl and CsCl structure: 

Body centered cubic, showing a 
primitive cell which is a 

rhombohedron of edge a
2
3  and 

angle between adjacent edges is 

109028’ and Translation vector 


a  

The rhombohedral primitive cell 
of the face centered cubic crystal 
with translation vectors  

)ˆˆ(2
1 yxaa 



 

)ˆˆ(2
1 zybb 



 

)ˆˆ(2
1 xzcc 



 
and the angles between the axes 
are 600  
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  NaCl      CsCl 

 The sodium chloride crystal structure can be (is) construct by arranging Na+ and Cl- ions 

alternately at the lattice points of a simple cubic lattice. In the crystal each ion is surrounded by six 

(6) nearest neighbors of the opposite charge. The space lattice is fcc and the basis has one cl- ion at 

000 and one Na+ ion at 
2
1

2
1

2
1 . Figure shows conventional cubic cell. Variation in ion diameters is 

due to clarify the spatial arrangement. Example: LiH, NaCl, KBr, KCl, PbS, NH4I, AgBr, Mgo, 

MnO, BaO, etc.  

 

 In the cesium chloride crystal structure, space lattice is simple cubic and the basis has one 

Cs+ ion at 000 and one Cl- at 
2
1

2
1

2
1 . There is one molecule per primitive cell, with atoms at the 

corners 000 and body centered positions
2
1

2
1

2
1  of the simple cubic space lattice. Each atom may be 

viewed as at the center of a cube of atoms of the opposite kind. So the number of nearest neighbors 

or co-ordination number is eight (8). Example: CsCl, NH4Cl, etc.  
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Lecture 04: Density and Packing fraction 

Density: Let us consider a cubic cell of lattice constant `a’ contains `n’ atoms per unit cell, then 

density of the crystal material is defined as  

 = 
cellunittheofVolume

cellunitofMass    = 
NV
Mn  = 3Na

Mn  

Where M = atomic weight and N Avogadro’s number and N
M

= Mass of each atom or molecule. 

N = 6.023×1023 mol-1 = 6.023×1026 kmol-1. 

The number of lattice points can be determined if we know the volume, density and molecular 

weight of the constituent atom of the cell. 

 

Problem 1: Calculate the lattice constant for rock salt crystal of density 2180 kg/m3 assuming that it 

has fcc lattice. Molecular weight of NaCl is 58.5. 

 

Solution: For fcc lattice, n = 4 and here V = a3. 

Therefore,  330
26

3 1022.178
10023.62180

45.58 m
N

Mna 






 

  63.51063.5 10   ma Å 

Problem 2: Calculate the number of atoms per unit cell for an fcc lattice of copper  (Cu) crystal. It 

is given that a = 3.6 Å, atomic weight of Cu = 63.6,  cu = 8960 kg/m3 and N = 6.023×1026 per 

kmole.  

Ans: 3.959 ≈ 4 

Exercise: The lattice parameter and atomic mass of a dimond crystal are 3.57Å and 12 respectively. 

Calculate the density of dimond. 

Solution:   12,1057.3 3103   Ma , No of atoms 8416
2
18

8
1







 






   

  3
3 /3540 mkg

Na
Mn

  

Exercise: Aluminium has fcc structure. If the density of Al is 2.7  103 kg/m3. Calculate the unit 

cell dimensions and the atomic diameter. (At wt. of al; = 26.98, Avogadro No. = 6.023 1026 kg 

mole). 
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Solution: 326
263

3 1034.66
10023.6107.2

498.26 m
N

MnaV 






, This gives, a = 4.05 

o
A  

Now for fcc crystal, we know that  a2  = 4D = 2D ,  D = 
2

a = 2.86 
o
A  

 

Atomic packing factor 

In crystallography, atomic packing factor (APF) or packing fraction is the fraction of volume in a 

crystal structure that is occupied by atoms. It is dimensionless and always less than unity. For 

practical purposes, the APF of a crystal structure is determined by assuming that atoms are rigid 

spheres. The radius of the spheres is taken to be the maximal value such that the atoms do not 

overlap. It is defined as the ratio of the actual volume occupied by the spherical atoms to the total 

available of the structure. It is also known as relative pacing density, efficiency or packing fraction. 

For one-component crystals (those that contain only one type of atom), the APF is represented 

mathematically by  

 

    APF = cellunittheofVolume
cellunitinspherethebyoccupiedVolume

 

i.e., 
unitcell

atomatoms

V
VNAPF   

and Effeciency, %100
unitcell

atomatoms

V
VN  

where Natoms is the number of atoms in the unit 

cell, Vatom is the volume of an atom, and Vunit 

cell is the volume occupied by the unit cell. It 

can be proven mathematically that for one-

component structures, the most dense 

arrangement of atoms has an APF of about 

0.74. In reality, this number can be higher due 

to specific intermolecular factors. For 

multiple-component structures, the APF can 

exceed 0.74. 
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APF for simple cubic: 

In this case, the side of the cube ‘a’ must be equal to 2R, where R is the atomic radius. i.e., 
2
aR   

and number of atoms in simple cubic 8
8
1
 = 1 

 Volume of atoms within the unit cell is  Va = 1  3

3
4 R = 

3

23
4







 a

 = 
6

3a  

and volume of the unit cell, Vc = a3.  

Therefore, packing factor = %100
c

a

V
V

 = 
6
  = 0.52 

 

APF for body-centered cubic (bcc) structure: 

In this case the diagonal of the cube y = 4R, where is the atomic radius. 

From figure, we can write, axaaax 22 2222   

aaaaaaxy 332 222222   

aR 34   or aR
4
3

  

Now, total number of atoms in bcc structure = (
8
1
 8 + 1) = 1 + 1 = 2 

 The volume of atoms in the unit cell 

333

8
3)

4
3(

3
8

3
42 aaRVa    

and volume of the unit cell, Vc = a3  

Therefore, efficiency, %100
c

a

V
V

  = 
8
3

 = 68%  

The primitive unit cell for the body-centered cubic (BCC) crystal structure contains nine 

atoms: one on each corner of the cube and one atom in the center. Because the volume of each 

corner atom is shared between adjacent cells, each BCC cell contains two atoms. 

Each corner atom touches the center atom. A line that is drawn from one corner of the cube through 

the center and to the other corner passes through 4r, where r is the radius of an atom. By geometry, 

the length of the diagonal is a√3. Therefore, the length of each side of the BCC structure can be 

related to the radius of the atom by 

y 

x 

a 
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Knowing this and the formula for the volume of a sphere 3

3
4 r , it becomes possible to calculate the 

APF as follows: 
 

  
 
 
Face centered cubic lattice: 

In this case the face diagonal y = 4R.  

From figure we get, y2 = a2 + a2 = 2a2  

or      y = 2 a 

 4R = 2 a or, R = a
4
2   

Total number of atoms in fcc structure is  = (
8
1
 8 ) + (

2
1
 6 ) = 1 + 3 = 4 

 Volume of atoms within the unit cell is  Va = 4  3

3
4 R = 4  

3

4
2

3
4








 a = 
6

2 3a  

and volume of unit cell, Vc = a3.  

Therefore, packing density, %100
c

a

V
V

  = 
6
2  = 74% 

 

Hexagonal close-packed (hcp) structure 

For the hexagonal close-packed (HCP) structure the derivation is similar. The side length of the 

hexagon will be denoted as a while the height of the hexagon will be denoted as c. Then:  

In hexagonal close packed structure we can write A = 2 R, where r is the atomic radius, 
2
aR  

Total no. of atoms in hc-p structure 

 631232
2
126

6
1







 






   
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Volume of the unit cell = 3  c ab sin 600 

      





 



bac .3   

    cabc 0sin.3 


  

    sin3 abc  

     002 60,60sin3  baca   

    ca2

2
33

  

 packing factor for h.c.p structure, 

  %74
633.133

2
33

2
33

2
2

3
















c
a

ca
a

Vc
Va  

Here, 633.1a
c  

 

 

 

It is then possible to calculate the APF as follows: 

  

 

By similar procedures, the ideal atomic packing factors of all crystal structures can be found. 

The common ones are collected here as reference, rounded to the nearest hundredth. 

 Simple cubic: 0.52  
 Body-centered cubic: 0.68  
 Hexagonal close-packed: 0.74  
 Face-centered cubic: 0.74  
 Diamond cubic: 0.34 
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Hexagonal close-packed crystals: the axial ratio 

From figure we can easily write 

 
4

3
2

22
22 aaax 






 , ax

2
3

  

where a is the centre to centre distance of the atom. 

and 
32

3
3
2

3
2 aaxh   

From  ABC, we can write, 

(AC)2 = (AB)2 + (BC)2 

  2
2

2

2
hca 






  

 
22

2

34
aca   

 
22

2

43
cca   

 
22

43
2 ca

  

 633.1
3
8


a
c  

The ideal axial ratio (c/a) for a hexagonal 
close-packed crystal structure can be 
calculated by considering non-interacting hard 
spheres packed in an h.c.p. lattice.  

If the sphere radius is r, then the lattice 
parameters a ( b) and c can be written in 
terms of r: 

These two relationships can be solved for the 
ideal axial ratio c/a: 
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a2 = a2/3 + c2/4 

4 = 4/3 + c2/a2 

c/a= 1.633 

Many materials have the hexagonal P crystal system, but the axial ratio is rarely ideal. Cadmium, 

for example, has an axial ratio of c/a = 1.886. This non-ideal structure has implications for the 

behaviour of the material, for example in slip. 

Similarities and Difference between the FCC and HCP Structure 

The face centered cubic and hexagonal close packed structures both have a packing factor of 0.74, 

consist of closely packed planes of atoms, and have a coordination number of 12. The difference 

between the fcc and hcp is the stacking sequence. The hcp layers cycle among the two equivalent 

shifted positions whereas the fcc layers cycle between three positions. As can be seen in the image, 

the hcp structure contains only two types of planes with an alternating ABAB arrangement. Notice 

how the atoms of the third plane are in exactly the same position as the atoms in the first plane. 

However, the fcc structure contains three types of planes with a ABCABC arrangement. Notice how 

the atoms in rows A and C are no longer aligned. Remember that cubic lattice structures allow 

slippage to occur more easily than non-cubic lattices, so hcp metals are not as ductile as the fcc 

metals. 

 

 

 

 

 

 
HCP lattice (left) and the fcc lattice (right) 
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The table below shows the stable room temperature crystal structures for several elemental metals. 

Metal Crystal Structure Atomic Radius (nm) 
Aluminum FCC 0.1431 
Cadmium HCP 0.1490 
Chromium BCC 0.1249 

Cobalt HCP 0.1253 
Copper FCC 0.1278 

Gold FCC 0.1442 
Iron (Alpha) BCC 0.1241 

Lead FCC 0.1750 
Magnesium HCP 0.1599 

Molybdenum BCC 0.1363 
Nickel FCC 0.1246 

Platinum FCC 0.1387 
Silver FCC 0.1445 

Tantalum BCC 0.1430 
Titanium (Alpha) HCP 0.1445 

Tungsten BCC 0.1371 
Zinc HCP 0.1332 

 


